Ring-Slippage Chemistry of Transition-Metal Cyclopentadienyl and Indenyl Complexes

JOSEPH M. O'CONNOR*

Department of Chemistry, D-006, University of California, San Diego, La Jolia, California 92093

CHARLES P. CASEY*

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Received March 5, 1986 (Revised Manuscript Received September 9, 1986)

Contents

I.	Introduction	307
II.	η^5 -Cyclopentadienyl Ligands	307
III.	η^3 -Cyclopentadienyl Ligands	308
IV.	η^{1} -Cyclopentadienyl Ligands	309
۷.	Interconversions of Cyclopentadienyl Ligands	309
	A. Photoinduced η^5 -C ₅ H ₅ to η^3 -C ₅ H ₅ Ring Slippage	310
	B. α -Hydrogen Abstraction	311
	C. β -Hydrogen Elimination	311
	D. C-H and C-C Bond Cleavage	311
	E. Ligand Substitution	312
	F. Cyclopentadienyl Ligand Transfer	313
VI.	η^5 -Indenyl Ligands	315
	A. η^5 -C ₉ H ₇ to η^3 -C ₉ H ₇ Rearrangements	315
	B. Structural Characterization of the η^3 -C ₉ H ₇ Ligand	315

I. Introduction

Cyclopentadienyl transition-metal chemistry dates back to the synthesis and characterization of ferrocene over 30 years ago.¹⁻³ The cyclopentadienyl ligand has since become one of the most extensively utilized ligands in organotransition metal research. At least 10 distinct bonding modes for the C_5H_5 ligand have been structurally characterized to date (Chart I). Of these, the η^5 - C_5H_5 , η^3 - C_5H_5 , and η^1 - C_5H_5 ligands are of particular interest due to their interconversion chemistry ("ring slippage") and the consequent implications for the design of catalytic systems.

This review concentrates on η^5 -, η^3 -, and η^1 -C₅H₅ ring isomerizations in transition-metal complexes.⁴ Coverage includes the historical development, structural and spectroscopic properties of the ligand types, and illustrative examples of the role that C₅H₅ isomerizations have in a number of fundamental organometallic reactions. Related chemistry of the η^5 -indenyl ligand is also presented.

II. η⁵-Cyclopentadlenyl Ligands

For a number of years it was believed that the bonding in all η^5 -cyclopentadienyl transition-metal complexes involved a uniform interaction between the five carbon atoms of the C₅H₅ ring and the metal atom. However, in 1963 Dahl and Wei reported structural CHART I

evidence for localized metal- C_5H_5 bonding in $(\eta^5-C_5H_5)Ni[C_7H_5(CO_2CH_3)_2]$ (1).⁵

The following year Bennett made similar bonding observations for a number of π -cyclopentadienyl transition-metal complexes.⁶ A localized π -allyl-ene formulism, 2, was suggested in which the allyl portion is always trans to the relatively strong field ligand on the opposite side of the metal.

In 1967 Wheatley pointed out difficulties in determining the significance of crystallographically observed η^5 -C₅H₅ distortions and brought into question whether or not distortions were actually detected.⁷ The concept of localized η^5 -C₅H₅ bonding in some "noncylindrical" complexes has only recently been verified by Smith for $[(\eta^5$ -C₅H₅)Ni(η^3 -C₃H₄)]₂ (3)⁸ and by Dahl for (η^5 -C₅Me₅)Co(CO)₂ (4).^{9,10}

Joseph M. O'Connor is an Assistant Professor of Chemistry at the University of California, San Diego. He received a B.S. degree in Chemistry from John Carroll University in 1976 and an M.S. degree under Professor H. A. Dieck from St. Louis University in 1979. In 1984 he received a Ph.D. in organic chemistry from the University of Wisconsin—Madison under the direction of Professor Charles P. Casey. After 9 months of postdoctoral study with Professor K. P. C. Vollhardt at the University of California, Berkeley, he joined the faculty at the University of California. His research interests are in synthetic and mechanistic organometallic chemistry.

Charles P. Casey is Helfaer Professor of Chemistry at the University of Wisconsin—Madison. He was born in St. Louis, MO, in 1942 and received a B.S. in Chemistry degree from St. Louis University in 1963. He received a Ph.D. in organic chemistry from MIT in 1968, where he studied organocopper chemistry under the direction of Professor George M. Whitesides. After spending 6 months as an NSF Postdoctoral Fellow with Professor Paul D. Bartlett at Harvard University, he joined the faculty at the University of Wisconsin in 1968. At Wisconsin, his research has been in the area of mechanistic organometallic chemistry.

III. η³-Cyclopentadienyl Ligands

The η^3 -cyclopentadienyl ligand proved to be a controversial species for a number of years. In 1968 King reported the synthesis of the neutral, diamagnetic complex $(C_5H_5)_2Mo(NO)(I)$ (5), for which a linear nit-

rosyl stretch was observed at 1648 cm⁻¹ in the IR spectrum.¹¹ King suggested that 5 avoided a 20-electron valence shell configuration by donating only three electrons from one of the C_5H_5 ligands. Although Basolo earlier recognized cyclopentadienyl ring slippage¹² (section VE), this report by King was the first in which a cyclopentadienyl ligand was formulated with η^3 bonding. A crystal structure determination on 5 later disproved the presence of an η^3 -C₅H₅ ligand.¹³

In 1969 Cotton reported the X-ray crystal structure of $(C_5H_5)_3Mo(NO)$ (6), for which an $(\eta^1-C_5H_5)(\eta^3-C_5H_5)(\eta^5-C_5H_5)Mo(NO)$ formulation seemed plausible on the basis of the 18-electron rule.¹⁴ However, the

structure was shown to consist of an $(\eta^{1}-C_{5}H_{5})(NO)Mo$ unit and two additional cyclopentadienyl ligands in which all 10 carbons had significant bonding interactions with molydenum. Cotton noted that simple geometry requires that a metal atom equidistant from three carbons of a regular planar pentagonal cyclopentadienyl ligand is necessarily equidistant from all five ring carbons. This makes $\eta^{3}-C_{5}H_{5}$ and $\eta^{5}-C_{5}H_{5}$ geometries indistinguishable, and Cotton stated that "the *concept* of a (trihaptocyclopentadienyl)metal bond... is mythical." ¹⁵ However, this rationale leaves open the possibility of a nonplanar $\eta^{3}-C_{5}H_{5}$ ligand or a planar $\eta^{3}-C_{5}H_{5}$ ligand with unequal carbon-metal distances.

Later the same year, King proposed the concept of "interligand resonance" to explain why the X-ray structure of 6 failed to show a distinct η^3 ligand.¹⁶ It was suggested that the skewed C_5H_5 ligand in 6 be considered a resonance hybrid of the η^3 and η^5 ring forms. The structure of 6 was addressed again in 1975 when Cotton referred to the skew C_5H_5 ligands as formally 4-electron donors and designated them as η^4 - C_5H_5 ligands.¹⁷

In 1974 Wakatsuki and Yamazaki reported that $(\eta^5-C_5H_5)Rh(PPh_3)_2$ reacts with isopropyl iodide to give the (isopropylcyclopentadienyl)(triphenylphosphine)-rhodium diiodide complex 7.¹⁸ In the ¹H NMR of 7

only two of the four C5H4R ring protons were coupled

to phosphorus. On the basis of the phosphorus-hydrogen couplings, it was suggested that 7 might be an η^3 -C₅H₄R complex. It is not clear why the 5-coordinate, 16-electron, η^3 -C₅H₄R formulation of 7 might be preferred over an alternative 6-coordinate, 18-electron η^5 -C₅H₄R species, and the authors did not rule out the latter possibility.

Bottomley, Darkwa, and White reported the synthesis of the fluxional, paramagnetic molecule, $(\eta^5-C_5H_5)_2V$ -(I)(NO) (8A and 8B) in which linear and bent nitrosyl groups interconvert (IR: 1690, 1590 cm⁻¹).¹⁹ For 8B to adhere to the 18- (17-) electron rule, one C_5H_5 ring may have nonplanar $\eta^3-C_5H_5$ bonding or both rings may be bonded in a planar $\eta^4-C_5H_5$ fashion.

The proposal of an η^3 -cyclopentadienyl ligand was unambiguously substantiated in 1978 when Huttner, Brintzinger, and Bell reported the crystal structure of $(\eta^5-C_5H_5)(\eta^3-C_5H_5)W(CO)_2$ (9).^{20,21} The $\eta^3-C_5H_5$ ligand

in 9 has a 20° angle between the planes of the allyl (C₁, C₂, C₃) and alkene (C₁, C₃, C₄, C₅) portions of the η^3 -C₅H₅ ligand. The carbon atoms of the alkene group are 2.98 Å from the metal atom—clearly a nonbonding distance. The η^5 -C₅H₅ and η^3 -C₅H₅ ligands of 9 interconvert on the NMR time scale as indicated by a singlet in the ¹H NMR spectrum at δ 5.17. The reaction of $(\eta^5$ -C₅H₅)₂W(CO) with CO to give 9 represents the first report in which an η^6 -C₅H₅ complex was converted into an isolable η^3 -C₅H₅ complex.

IV. η^{1} -Cyclopentadlenyl Ligands

Within 3 years of the determination of the structure of ferrocene, the first η^{1} -C₅H₅ transition-metal complexes were reported in the literature.^{22,23} X-ray studies indicate that the five-carbon ring is nearly planar and that the angle between the metal, the sp³ ring carbon, and the ring center of gravity is ~120°.²⁴

The η^1 -C₅H₅ ligand in 6 has a Mo–C distance of 2.29 Å and C–C distances of 1.47 (C₁–C₂), 1.35 (C₂–C₃), 1.44 (C₃–C₄), 1.34 (C₄–C₅), and 1.47 (C₅–C₁). The largest deviation of a carbon from the mean plane of the ring is 0.013 Å.¹⁴

The room-temperature NMR spectra of η^{1} -C₅H₅ ligands typically exhibit one resonance for the protons due to rapid migration of the metal around the ring via a series of sequential 1,2-shifts. Although is some cases such as $(\eta^{5}$ -C₅H₅) $(\eta^{1}$ -C₅H₅)Fe(CO)₂ this fluxional process may be frozen out on the NMR time scale, more often this is not possible.²⁵ Faller, Murray, and Saunders utilized isotopic perturbation of degeneracy to distinguish fluxional η^{1} - and η^{5} -C₅H₅ rings by NMR spectroscopy.²⁶

V. Interconversions of Cyclopentadienyl Ligands

By 1968 it was clear from various physical studies (vide infra) that the C_5H_5 ligand was capable of η^5 , skew η^5 , and η^1 forms, yet there were no reports of η^5 to η^1 interconversions.

In 1968 Ustynyuk reported that $(\eta^5-C_5H_5)_2$ Ni reacts with PPh₃ at 50 °C to give a green unstable solid formulated as $(\eta^1-C_5H_5)(\eta^5-C_5H_5)Ni(PPh_3)$ (10).²⁷ Compound 10 was not isolated, and characterization consisted of reaction with CCl₄/HCl to give $(\eta^5-C_5H_5)Ni-$ (PPh₃)Cl and with I₂ to give $(\eta^5-C_5H_5)Ni(PPh_3)I$.

In 1969 Tsutsui and co-workers reported evidence for an η^1 -C₅H₅ intermediate, 11, in the reaction of FeCl₃ and NaC₅H₅ to give ferrocenium chloride.^{28,29} The spec-

troscopic evidence for 11 was an IR stretch at 1620 cm⁻¹ attributed to the conjugated double bonds in the η^1 -C₅H₅ ring. Other evidence for 11 was reaction with CH₃OH/HCl to give FeCl₃ and polymeric cyclopentadiene and reaction with maleic anhydride to give an uncharacterized compound that could be hydrolyzed to *endo*- and *exo*-bicyclo[2.2.1]hept-5-ene 2,3-anhydrides.

Cross and Wardle reported that a low yield of $(\eta^{1}-C_{5}H_{5})Pd(PEt_{3})_{2}Br$ was formed from the reaction of $(\eta^{5}-C_{5}H_{5})Pd(PEt_{3})Br$ and PEt_{3} .³⁰ The evidence was a ¹H NMR resonance at δ 6.37 attributed to the $\eta^{1}-C_{5}H_{5}$ ligand.

In 1971 Cotton reported the variable-temperature ¹H NMR of $(\eta^5-C_5H_5)_2$ Ti $(\eta^1-C_5H_5)_2$ (12), for which he was able to observe η^1 to η^5 cyclopentadienyl interconversions.^{31,32} Although no intermediates were observed, Cotton later proposed an $(\eta^1-C_5H_5)(\eta^4-C_5H_5)_2(\eta^5-C_5H_5)$ Ti intermediate, 13, for these η^1 to η^5 interconversions.¹⁷ Atwood and co-workers have structurally characterized the related complex $(C_5H_5)_4$ Zr and found one $\eta^1-C_5H_5$ ligand and three $\eta^5-C_5H_5$ ligands in which the Zr–C distances are longer than expected.³³

Cotton also proposed $(\eta^4$ -C₅H₅)₂ intermediates for the η^5 - to η^1 -C₅H₅ interconversions observed by McClever-

ty³⁴ in the variable-temperature ¹H NMR of $(\eta^{1}-C_{5}H_{5})(\eta^{5}-C_{5}H_{5})Mo(NO)(S_{2}CNMe_{2})$ (14).¹⁷ Cotton suggested that the ring exchange in 14 was facilitated by the conversion of a 3-electron NO or S₂CNR₂ ligand to a 1-electron-donor ligand. McCleverty later expressed reservations concerning Cotton's proposed η^{4} -cyclopentadienyl intermediate and suggested an $\eta^{3}-C_{5}H_{5}$ intermediate as an alternative.³⁵

Werner and Kraus also observed η^5 - to η^1 -C₅H₅ ligand exchange in $(\eta^5$ -C₅H₅) $(\eta^1$ -C₅H₅)Pd(P(*i*-Pr)₃) (15) and proposed a $(\eta^3$ -C₅H₅)₂ intermediate.³⁶

In 1978 Hames, Legzdins, and Martin reported the first case in which an η^5 -C₅H₅ complex, $(\eta^5$ -C₅H₅)₂Cr, was converted to an isolable, well-characterized η^1 -C₅H₅ complex, $(\eta^1$ -C₅H₅) $(\eta^5$ -C₅H₅)Cr(NO)₂ (16).³⁷

The following year, Werner and Kühn reported the conversion of an η^5 -C₅H₅ complex, 17, to an isolable η^1 -C₅H₅ complex, 18, induced by addition of a neutral 2-electron-donor ligand.³⁸ In solution, 18 was shown to be in equilibrium with an $(\eta^5$ -C₅H₅) $(\eta^1$ -allyl) complex, 19.

In 1980 Casey and Jones reported that $(\eta^5-C_5H_5)$ Re-(CO)(NO)(CH₃) (20) reacts reversibly with 2 equiv of PMe₃ to produce $(\eta^1-C_5H_5)$ Re(CO)(NO)(CH₃)(PMe₃)₂ (21) (vide infra).³⁹

Goel and co-workers reported the related reaction of $(\eta^5-C_5H_5)Pt(CH_2CMe_2P(t-Bu)_2)$ (22) and PPh₃ to give $(\eta^1-C_5H_5)Pt(CH_2CMe_2P(t-Bu)_2)(PPh_3)$ (23).⁴⁰ The ¹H NMR resonance for the $\eta^1-C_5H_5$ ligand in 23 is a triplet at δ 6.24 ($J_{PH} = 3.4$ Hz).

A. Photoinduced η^5 -C₅H₅ to η^3 -C₅H₅ Ring Slippage

In some cases it is possible to photochemically generate η^3 -C₅H₅ metal complexes from η^5 -C₅H₅ precursors. Crichton, Rest, and Taylor have reported that photolysis of (η^5 -C₅H₅)Co(CO)₂ (24) in a pure CO matrix (12 K) led to a decrease in the IR bands for 24 (2032, 1972, 817 cm⁻¹) and the appearance of a new bands at 2075, 2018, and 781 cm⁻¹, attributed to 25.⁴¹ A comparison

of the observed and calculated spectra for ¹³CO-substituted 24 and 25 indicated that 25 contained an M-(CO)₃ fragment with $C_{3\nu}$ symmetry. Additional support for an η^3 -C₅H₅ ligand in 25 came from the similarity of its IR spectrum to that of $(\eta^3$ -C₃H₅)Co(CO)₃, which has IR bands at 2076 and 2025 cm⁻¹ in the gas phase.

Rest and co-workers carried out a related study on $(\eta^5-C_5H_5)Fe(CO)_2CH_3$ (26) and again observed a shift of the $\nu(CO)$ IR bands to higher wave number (2050, 1982, 1975 cm⁻¹), as expected for an increase in the number of CO ligands.^{42,43} A low conversion to the presumed $\eta^3-C_5H_5$ tricarbonyl product, 27A, precluded ¹³CO labeling studies. An additional complication in this case arises from the potential for metal to ring methyl migration upon addition of CO to give 27B.

Blaha and Wrighton studied the related photolysis of $(\eta^5-C_5H_5)Fe(CO)_2CH_2Ph$ in the presence of added ligand (CO, PPh₃) and observed the formation of $(\eta^4-C_5H_5CH_2Ph)Fe(CO)_2L$.⁴⁴ Their mechanism involved

generation of $(\eta^4-C_5H_5)Fe(CO)_2L$ and $CH_2C_6H_5$ radicals that couple to give $(\eta^4-C_5H_5CH_2Ph)Fe(CO)_2L$. It was also noted that $(\eta^4-C_5H_6)Fe(CO)_3$ exhibits IR bands at 2050, 1982, and 1975 cm⁻¹ of relative intensities nearly identical with those attributed to **27A** by Rest.^{42,43} It thus appears that $(\eta^4-C_5H_5CH_3)Fe(CO)_3$ (**27B** or **27C**) must be considered as an alternative to **27A**.

More recently, Perutz and co-workers obtained evidence for the formation of $(\eta^3-C_5H_5)(\eta^5-C_5H_5)Re(CO)H$ (28) upon photolysis of $(\eta^5-C_5H_5)_2ReH$ (29) in a CO matrix.⁴⁵ Compound 28 is formulated as an $\eta^3-C_5H_5$ monocarbonyl species on the basis of a CO stretch at 1918 cm⁻¹, which is shifted to 1921 cm⁻¹ in the deuteride 28-d₁. In a ${}^{12}CO/{}^{13}CO$ (1/1) matrix, bands are observed Ring Slippage of Transition-Metal Cp and Indenyl Complexes

at 1918 and 1872 cm⁻¹. The absence of bands between 1918 and 1872 cm⁻¹ supports the monocarbonyl formulation. Continued irradiation leads to the formation of the $(\eta^{1}-C_{5}H_{5})$ dicarbonyl complex 30.

The validity of the conclusions arrived at in these matrix studies requires adherence of the compounds to the 18-electron formalism. Characteristic infrared data for the η^3 -C₅H₅ ligand are not firmly enough established to permit direct observation of an η^3 -C₅H₅ ligand by IR spectroscopy.

B. α -Hydrogen Abstraction

Marks and Kolb observed the exchange of η^5 -C₅H₅ hydrogens with BH₄ hydrogens in the complex (η^5 -C₅H₅)₂Zr(H)(BH₄) and suggested the possibility of η^1 -C₅H₅, η^3 -C₅H₅, and cyclopentadienylidene (A) zirconium intermediates.⁴⁶ Direct evidence for a cyclopentadienylidene transition-metal complex has not yet been reported in the literature.

For the rearrangement of $(\eta^5-C_5H_5)_2$ Ti to dimer 31, Brintzinger and Bercaw suggested formation of an $\eta^1-C_5H_5$ titanium complex, 32, followed by α -H abstraction to give titanafulvene intermediate 33.⁴⁷ Neither 32 nor 33 was observed, although there is ample precedent for $\eta^5-C_5H_5$ to $\eta^1-C_5H_5$ ring slippage in other titanium complexes (vide infra).^{31,32} There is no clear precedent for α -H abstraction from $\eta^1-C_5H_5$ ligands.

Slocum and co-workers observed isotopic exchange of deuterium for hydrogen in ferrocenes containing electron-withdrawing substituents on the cyclopentadienyl ligand.^{48,49} When 9% D₂O-pyridine solutions of cyanoferrocene were refluxed for 6 h, $(\eta^5-C_5H_5)Fe(\eta^5-C_5D_4CN)$ (34) was formed in low yield.

Deuterium exchange occurred only in the substituted cyclopentadienyl ring. Examination of a variety of substituents indicated that the exchange did not correlate with π -cyclopentadienyl ring proton acidity. Added NaOD increased the reaction rate by about 2

and led Slocum to suggest a mechanism involving a rate-determining η^5 to η^1 rearrangement followed by deuterium exchange with the proton on the sp³ carbon.

Chiral ferrocenylcyclohexenone-aluminum trichloride complex 35 has been proposed by $Astruc^{50}$ and Slo $cum^{51,52}$ to undergo η^5 to η^1 interconversions, followed by either base abstraction of an α -hydrogen or insertion of Fe into a C-H bond, to explain an intramolecular racemization reaction. The proposed intermediates were not observed.

C. β -Hydrogen Elimination

Marks reported that $(\eta^5-C_5H_5)_3$ Th $(i-C_3H_7)$ (36), which is thermally inert toward β -hydride elimination, gives $(C_5H_5)_3$ Th (92%), propane (53%), and propene (47%), upon photolysis.⁵³ Marks interpreted this reaction as the result of a β -hydride elimination sequence in which a photoinduced C_5H_5 ring slip opens up the necessary coordination site on thorium.

$$(C_5H_5)_3$$
ThH + $(C_5H_5)_3$ ThCH(CH₃)₂ -

2(C5H5)3Th + CH3CH2CH3

Bergman and Yang observed the conversion of a metallacyclopentane complex, $(\eta^5-C_5H_5)\operatorname{Re}(\operatorname{CO})_2(\operatorname{CH}_2)_4$ (37), to methylcyclopropane.⁵⁴ Labeling studies provided evidence in support of a β -hydride elimination/ readdition mechanism in which an η^5 to η^3 ring slip was proposed as an intermediate step.

More recently, Rest, Alt, and Mahmoud found that photolysis of $(\eta^5-C_5H_5)Ru({}^{12}CO)_2(CH_2CH_3)^4$ (38) in ${}^{13}CO$ -doped CH₄ matrices gave $(\eta^5-C_5H_5)Ru({}^{12}CO)_2H$ (39) and $(\eta^5-C_5H_5)Ru({}^{12}CO)(C_2H_4)H$ (40).⁴³ Photolysis of 38 at high dilution in a pure CO matrix led to the observation of new IR bands tentatively assigned to $(\eta^3-C_5H_5)Ru(CO)_3(CH_2CH_3)$.

D. C-H and C-C Bond Cleavage

M. L. H. Green has suggested photochemically induced η^{5} - to η^{3} -C₅H₅ rings shifts to explain both the insertion of tungsten into carbon-hydrogen bonds⁵⁵ and the decomposition of tungsten metallacyclobutanes.^{55,57}

When $(\eta^5-C_5H_5)_2WH_2$ was irradiated in *p*-xylene, a dialkyl product 41 was isolated. Green proposed an $\eta^3-C_5H_5$ intermediate, 42, as a possibility in this and related C-H insertion reactions. Reversible metal to ring alkyl migration to give intermediate 43 could not be ruled out.

Irradiation of $(\eta^5-C_5H_5)_2W(CH_2CH_2CH_2)$ in hexane is reported to give ethylene in low yield.⁵⁶ Green used circumstantial evidence such as the reaction of $\eta^3-C_5H_5$ complex 9 to give $(\eta^5-C_5H_5)_2W(CO)^{20}$ as support for $\eta^3-C_5H_5$ intermediate 44 in the formation of ethylene.

Rest, Graham, and co-workers observed the formation of $(\eta^5-C_5R_5)Ir(CO)(CH_3)H$ upon photolysis of $(\eta^5-C_5R_5)Ir(CO)_2$ in CH₄ matrices at 12 K.⁵⁸ In Ar or N₂ matrices only a trace amount of $(\eta^5-C_5R_5)Ir(CO)$ was formed. In ¹³CO-doped matrices exchange with ¹²CO was very slow. On the basis of these observations, the authors suggested an $\eta^5-C_5R_5$ to $\eta^3-C_5R_5$ ring slip may open up the coordination site necessary for interaction with CH₄.

E. Ligand Substitution

In 1966 Basolo noted that the rate of reaction between PPh₃ and the coordinatively saturated complexes $(\eta^5-C_5H_5)M(CO)_2$ (M = Rh, Co) to give $(\eta^5-C_5H_5)M(CO)PPh_3$ was unusually fast and depended on the concentration of both metal complex and phosphine.¹² To explain these associative substitution reactions, it was proposed that slippage of the cyclopentadienyl ring occurs as phosphine attacks to produce the $\eta^4-C_5H_5^{-1}$ intermediate 45. This proposal was the first recognition that reversible $\eta^5-C_5H_5$ ring slippage reactions have a role in the ligand substitution chemistry of cyclopentadienyl metal complexes.

In 1983 Basolo reformulated this η^4 -C₅H₅⁻ intermediate as an η^3 -C₅H₅ complex and proposed a similar intermediate for the related associative substitution reactions of (η^5 -C₅Me₅)Rh(CO)₂.⁵⁹

More recently, Basolo and Rerek studied the kinetics and mechanism of PPh₃ substitution reactions for other $(\eta^{5}$ -cyclopentadienyl)(dicarbonyl)rhodium derivatives.⁶⁰ Again the reactions are first order in both metal complex and PPh₃. The rates of reaction follow the order $(\eta^{5}-C_{9}H_{7})Rh(CO)_{2} > [\eta^{5}-C_{9}(CH_{3})_{7}]Rh(CO)_{2} > (\eta^{5}-C_{5}H_{4}NO_{2})Rh(CO)_{2} > (\eta^{5}-C_{5}H_{4}PPh_{3})Rh(CO)_{2}^{+} \gg (\eta^{5}-C_{5}H_{5})Rh(CO)_{2}.$

For nitro derivative $(\eta^5 \cdot C_5 H_4 N O_2) RhCO)_2$, a fulvenic resonance structure, 46, at the transition state, apparently accelerates the reaction rate relative to that for $(\eta^5 \cdot C_5 H_5) Rh(CO)_2$.

Cramer previously used a kinetic argument to support a proposed $(\eta^3-C_5H_5)Rh(C_2H_4)_2(PPh_3)$ intermediate in the associative C_2H_4 substitution reactions of $(\eta^5-C_5H_5)Rh(C_2H_4)_2$.⁶¹

Nesmeyanov suggested both η^3 -C₅H₅ and η^1 -C₅H₅ intermediates, 47 and 48, in the reaction of $(\eta^5$ -C₅H₅)W-(CO)₃(C₆H₅) with PPh₃ to give $(\eta^5$ -C₅H₅)W(CO)₂-(PPh₃)(COC₆H₅) and W(CO)₃(PPh₃)₃.⁶² Intermediates 47 and 48 were not supported by spectroscopy or kinetic evidence, and Nesmeyanov suggested compounds 49 and 50 could also be feasible intermediates.

Bergman and co-workers carried out kinetic studies on the reaction of $[(\eta^5-C_5H_5)Co(CO)CH_3]_2$ (51) with CO to give $[(\eta^5-C_5H_5)Co(CO)]_2(CH_3)(COCH_3)$ (52) and

Ring Slippage of Transition-Metal Cp and Indenyl Complexes

suggested the involvement of mononuclear η^5 -C₅H₅ or η^3 -C₅H₅ odd-electron intermediates, 53 and 54.⁶³

Casey and co-workers reported structural evidence for the formation of η^1 -C₅H₅ intermediates in the phosphine substitution reactions at coordinatively saturated η^5 -C₅H₅ metal centers. The reaction of (η^5 -C₅H₅)Re(NO)(CO)(CH₃) (20) with 2 equiv of PMe₃ at 25 °C yields the bis(phosphine) adduct (η^1 -C₅H₅)Re-(NO)(CO)(CH₃)(PMe₃)₂ (21) in which the η^5 -C₅H₅ ring has slipped all the way to an η^1 -C₅H₅ configuration.^{39,64,65} Upon being heated to 90 °C, 20 and 21 equilibrate and are converted to a mixture of phosphine-substituted methyl compound 55 and the phosphine-substituted

acetyl compound 56. The rate of formation of 21 depends on the concentration of both 20 and PMe₃ and thus requires a mono(phosphine) adduct 57 as an intermediate. Three possible 18-electron structures for such an intermediate are an η^3 -C₅H₅ linear nitrosyl, an η^4 -C₅H₅CH₃ linear nitrosyl, or an η^5 -C₅H₅ bent nitrosyl compound.

The reactions of $(\eta^{5}-C_{5}H_{5})Mo(CO)_{2}(NO)$ (58) and $(\eta^{5}-C_{5}H_{5})W(CO)_{2}(NO)$ (59) with PMe₃ at -60 °C also give observable bis(phosphine) η^{1} -cyclopentadienyl compounds $(\eta^{1}-C_{5}H_{5})Mo(CO)_{2}(NO)(PMe_{3})_{2}$ (60) and $(\eta^{1}-C_{5}H_{5})W(CO)_{2}(NO)(PMe_{3})_{2}$ (61).^{64,65} Compounds 60 and 61 are unstable at room temperature and decompose to starting material and $\eta^{5}-C_{5}H_{5}$ mono(phosphine) adducts. The reactions of 58 and 59 with PMe₃ also show second-order kinetics and require a mono(phosphine) intermediate, 62. Since both 58 and 59 contain a nitrosyl ligand, there are two possible 18-electron formulations for 62: an $\eta^{3}-C_{5}H_{5}$ linear nitrosyl compound and an $\eta^{5}-C_{5}H_{5}$ bent nitrosyl compound.

The non-nitrosyl-containing compound $(\eta^5 \cdot C_5 \cdot H_5)$ -Re(CO)₃ (63) reacts reversibly with PMe₃ at +64 °C to give a stable $\eta^1 \cdot C_5 \cdot H_5$ bis(phosphine) adduct, $(\eta^1 - C_5 \cdot H_5)$ Re(CO)₃(PMe₃)₂ (64), which was characterized by X-ray crystallography.⁶⁶ The rate of reaction of 63 depended on the concentration of both Re and PMe₃, and a mono(phosphine) intermediate is again required. The only reasonable 18-electron structure for this intermediate is the $\eta^3 \cdot C_5 \cdot H_5$ complex 65. When the equilibrium mixture of 63 and 64 is heated at 100 °C

for long periods, the phosphine substitution product is formed.

To date, these associative PMe_3 substitution reactions are the only reports of the direct observation and isolation of "ring-slipped" intermediates in ligand substitution and CO-insertion reactions.

Brill studied the kinetics of an Arbusov Rearrangement involving $(\eta^5-C_5H_5)Co(dppe)(I)^+$ (66) and P(OC-H₃)₃ to give $(\eta^5-C_5H_5)Co(dppe)[P(O)(OCH_3)_2]^+$ (67) and CH₃I.⁶⁷ The formation of an intermediate species, $(\eta^5-C_5H_5)Co(dppe)[P(OCH_3)_3]^{2+}$ (68), was observed to follow second-order kinetics and led Brill to propose $(\eta^3-C_5H_5)Co(dppe)(I)(P(OCH_3)_3)^+$ (69) as an intermediate in the conversion of 66 to 67.

Brown also relied on kinetic evidence to support a proposed, but unobserved, $(\eta^{1}-C_{5}H_{5})$ intermediate, 70, in the reaction of $(\eta^{5}-C_{5}H_{5})Mo(CO)_{3}H$ and $HSn(n-Bu)_{3}$ to give $(\eta^{5}-C_{5}H_{5})Mo(CO)_{3}Sn(n-Bu)_{3}$.⁶⁸

An η^{5} -C₅H₅ formyl intermediate is also possible for 70. Brown observed a slower reaction for the tungsten analogue and pointed out that the W-H bond strength is greater than the Mo-H bond strength, an observation consistent with a formyl intermediate. However, CO insertion into metal-hydride bonds is rare and Casey has previously observed faster PMe₃-induced η^{5} - to η^{1} -C₅H₅ ring slippage for $(\eta^{5}$ -C₅H₅)Mo(CO)₂(NO) (58) than for $(\eta^{5}$ -C₅H₅)W(CO)₂(NO) (59).^{64,65}

F. Cyclopentadlenyl Ligand Transfer

Cyclopentadienyl ligand-transfer reactions have been known since 1956 when Wilkinson, Cotton, and Birmingham reported that the reaction of chromocene and ferrous chloride gave ferrocene.⁶⁹ However, mechanistic details have not been well established in most cases.

The most detailed work with early metal complexes is that of Brubaker and co-workers.⁷⁰⁻⁷² Photolysis of $(\eta^5-C_5H_5)_2MCl_2$ and $(\eta^5-C_5D_5)_2MCl_2$ (72) mixtures (M = Ti, V, Hf) results in intermolecular exchange of the

cyclopentadienyl ligands. The irradiation of 1/1 titanocene dichloride/carbon tetrabromide gives (η^5 - C_5H_5)TiCl₃ and (η^5 - C_5H_5)TiCl₂Br, an indication of a photoinitiated free-radical mechanism. However, the fact that (η^5 - C_5H_5)TiCl₃ is not found in the absence of a sensitizer led Brubaker to suggest that in some cases a photochemically induced ring slippage may open up the coordination sites necessary for a bimolecular C_5H_5 -bridged mechanism.

Brubaker found that in thermal C_5H_5 exchange reactions the rate of exchange depends directly on the conductivity of a given complex: $(\eta^5-C_5H_5)_2Cr > (\eta^5-C_5H_5)_2U \gg (\eta^5-C_5H_5)_2UCl$. To explain these observations a mechanism involving free C_5H_5 anions was proposed:

$$(C_{5}H_{5})_{2}M \rightleftharpoons C_{5}H_{5}^{-} + C_{5}H_{5}M^{+}$$
$$(C_{5}D_{5})_{2}M \rightleftharpoons C_{5}D_{5}^{-} + C_{5}D_{5}M^{+}$$
$$C_{5}D_{5}^{-} + C_{5}H_{5}M^{+} \rightarrow (C_{5}H_{5})(C_{5}D_{5})M$$
$$C_{5}H_{5}^{-} + (C_{5}D_{5})_{2}M \rightarrow (C_{5}H_{5})(C_{5}D_{5})M + C_{5}D_{5}^{-}$$

Loss of a coordinated η^5 -C₅H₅ ligand to give a C₅H₅⁻ anion is well established. In 1966, Behrens and Meyer speculated that (C₅H₅)₂Ni might reversibly dissociate to [Ni(NH₃)₆]²⁺[C₅H₅]₂⁻ in liquid ammonia.⁷³ In 1979 Booth and Smith reported that reaction of (C₅H₅)₂Ni and 2 equiv of CH₂=PPh₃ gave an air-sensitive brown precipitate that, although itself uncharacterized, gave [(η^5 -C₅H₅)Ni(CH₂PPh₃)₂]⁺[BPh₄]⁻ upon treatment with NaBPh₄.⁷⁴ Fabian and Labinger reported that (η^5 -C₅H₅)(η^1 -C₅H₅)Fe(CO)₂ reacts rapidly with PMe₃ to give a yellow precipitate, which they formulated as [(η^5 -C₅H₅)Fe(CO)(PMe₃)₂]⁺[C₅H₅]⁻ on the basis of its reactions with water and CHCl₃.⁷⁵ Due to poor solubility of the compound in polar solvents, the only spectroscopic characterization was an IR band at 1940 cm⁻¹.

Casey, O'Connor, and Haller reported spectroscopic and structural evidence for the interconversion of η^5 - C_5H_5 , η^1 - C_5H_5 , and ionic " η^0 "- C_5H_5 ⁻ compounds in the reaction of $(\eta^5-C_5H_5)Re(NO)(CH_3)(PMe_3)$ (55) with PMe₃.⁷⁶ When a THF solution of 55 and 4 M PMe₃ was monitored by ¹H NMR, the clean conversion to η^1 -C₅H₅ tris(phosphine) complex 73 was observed. The authors proposed that the conversion of 55 to 73 involves an η^3 -C₅H₅ intermediate, 74. When THF solutions of 55 and PMe_3 were heated at 50 °C, the cyclopentadienyl ligand was cleaved from rhenium and the ionic " η^{0} "- $C_5H_5^-$ compound 75 crystallized from hot THF. Compound 75 was characterized by X-ray crystallography; the closest distance between anion and cation is 3.65 Å between a carbon of the C_5H_5 anion and a carbon of a PMe_3 ligand. When solid 75 was heated in THF, it slowly dissolved to re-form the η^5 -C₅H₅ complex 55. In addition to 75, the reaction of 55 and PMe_3 gave a 1/1

mixture of $1-\eta^{1}-(1,3$ -cyclopentadiene) compound 76 and $2-\eta^{1}-(1,3$ -cyclopentadiene) compounds 77. These products are formally the result of hydrogen 1,5-shifts around the rhenium-substituted ring.

A number of groups have suggested the formation of cyclopentadienyl-bridged intermediates to explain C_5H_5 transfer between metal centers. Maitlis, Efraty, and Games suggested cyclopentadienyl-bridged binuclear intermediates 78 and 79 to explain C_5H_5 transfer from $(\eta^5-C_5H_5)Fe(CO)_2Br~(80)$ to $(\eta^4-C_4Ph_4)Ni(Br)_2~(81)$.⁷⁷

Rubezhov and Gubin noted that coordinatively saturated 80 was unlikely to associate with 81 via halide bridges. They suggested initial dissociation of CO or Br from 80 followed by reaction with 81.⁷⁸

Efraty has proposed that 80 transfers a C_5H_5 ligand to $(\eta^4-C_4R_4)Co(CO)_2Br$ (82) by initial loss of CO from 82 and $\eta^5-C_5H_5$ to $\eta^3-C_5H_5$ ring slippage to generate the C_5H_5 -bridged intermediates 83 and 84.⁷⁹

Bryndza and Bergman found that heating $(\eta^5-C_5H_4Me)Co(Me)_2(PMe_3)$ (85) and $(\eta^5-C_5H_5)Co(PPh_3)_2$ (86) in THF- d_8 led to a 60/40 equilibrium mixture of

 $(\eta^{5}-C_{5}H_{5})Co(Me)_{2}(PMe_{3})$ (87) and $(\eta^{5}-C_{5}H_{4}Me)Co-(PPh_{3})_{2}$ (88).⁸⁰ Through a series of reactivity studies, evidence was obtained for cyclopentadienyl ligand exchange rather than exchange of the methyl and phosphine ligands. Excess PPh₃ failed to inhibit the ex-

change process. The authors suggested that exchange occurs by interaction of two coordinatively saturated complexes or that its rate is controlled by some other process such as an η^5 to η^3 rearrangement. It was pointed out that Werner's unusual C₅H₅-bridged complex, **89**, could be an interesting model for the transition state.³⁸

VI. η^5 -Indenyi Ligands

 η^5 -Indenyl complexes exhibit a localized allyl-ene structure similar to that observed in some "noncylindrical" η^5 -C₅H₅ complexes.⁸¹ The distortion is more pronounced than in the η^5 -cyclopentadienyl ligand due to incorporation of the ene unit into the aromatic six-membered ring. An illustrative example is the crystal structure of $[(\eta^5$ -C₉H₇)Ir(PPh₃)₂H]⁺BF₄⁻ (90).⁸¹ The projection of the iridium atom on the plane of the five-carbon ring is 0.24 Å from the ring centroid.

As was observed for localized η^5 -C₅H₅ systems, the ligand with the greatest trans influence is trans to the ene portion of the five-membered ring.

A number of methods for the quantitative description of η^5 -allyl-ene distortions have been proposed.⁸¹⁻⁸³ The degree of allyl-ene distortion in η^5 -C₉H₇ complexes is reflected in the ¹³C NMR signals of the ring junctions carbons: the greater the distortion, the more downfield the chemical shift.^{84,85}

A number of groups have correlated the barrier to η^5 -indenyl rotation about the metal-ring axis with the degree of allyl-ene distortion: the greater the distortion, the lower the barrier to rotation.^{85,86}

A. η^5 -C₆H₇ to η^3 -C₉H₇ Rearrangements

The presence of the fused benzene ring in η^5 -C₉H₇ complexes results in more facile η^5 to η^3 ring isomerizations for indenyl ligands than for cyclopentadienyl ligands. This effect has been aptly termed the "indenyl ligand effect" by Basolo.⁸⁷

More rapid substitution reactions of η^5 -indenyl complexes compared to η^5 -cyclopentadienyl complexes were first observed by Hart-Davis and Mawby for the reaction of $(\eta^5-C_9H_7)Mo(CO)_3CH_3$ (91) and PPh₃ to give $(\eta^5-C_9H_7)Mo(CO)_2(PPh_3)(COCH_3)$ (92).⁸⁸ To explain the rate acceleration and the observed second-order kinetics, η^3 -indenyl intermediate 93 was proposed.

Hart-Davis, White, and Mawby found that the observed rate constants for reaction of $(\eta^5-C_9H_7)Mo$ - $(CO)_3X$ (X = Cl, Br, I) (94) with phosphine and phosphite ligands fit the expression $K_{obsd} = K_A + K_B[L]$, where K_A is a dissociative rate constant and K_B an associative rate constant.⁸⁹⁻⁹¹ For both the associative and dissociative reactions, the rates were faster than for the corresponding η^5 -C₅H₅ complexes. This acceleration is explained by an η^5 to η^3 ring slippage in the associative reactions. For the dissociative component, it was suggested that the rate acceleration could be due to a loss of planarity of the indenyl ligand, with the six-membered ring bending toward the metal. Alternatively, it was suggested that the intermediate may involve movement of the metal toward a more central position above the planar indenyl ligand.

Green and co-workers proposed η^{5} - to η^{3} -C₉H₇ ring slippage to account for the higher reactivity of $(\eta^{5}$ -C₉H₇)Rh(CH₂CH₂)₂ (95) than $(\eta^{5}$ -C₅H₅)Rh(CH₂CH₂)₂ (96) toward ligand substitution.^{92,93} Green proposed a similar η^{3} -intermediate, 97, to account for the reaction of η^{5} -indenyl complex 98 with CF₃COCF₃ to give indenyl alcoholates 99.⁹⁴

The barrier to alkene rotation in $(\eta^5-C_9H_7)Rh(C_2H_4)_2$ (95) is 10.3 kcal mol^{-1,95} while the barrier in $(\eta^5-C_5H_5)Rh(C_2H_4)_2$ (96) is 15 kcal mol^{-1,96,97} The lower barrier in 95 has been attributed to an indenyl ligand electronic effect.⁸⁶ Back-bonding to the ethylene π^* orbital reduces the repulsion between a filled polyene level and a filled metal d orbital. In a 90° ethylene rotation, the back-bonding is lost and an η^5 to η^3 ring slip reduces the increase in repulsion at the transition state.⁸⁶

B. Structural Characterization of the η^3 -C₉H₇. Ligand

Struchkov and co-workers were the first to structurally characterize an η^3 -C₉H₇ metal complex, (η^5 -C₉H₇)(η^3 -C₉H₇)W(CO)₂ (100).⁹⁸ As was observed for the analogous η^3 -C₅H₅ complex, 9, the η^3 ligand is bent 26° with 3.2-Å carbon-metal distances for the ene unit. In the ¹H NMR spectrum of 100 resonances are observed at δ 6.6 (8 H), 4.8 (4 H), and 3.4 (2 H), indicative of rapid η^5 to η^3 interconversions on the NMR time scale. For comparison, the ¹H NMR of $[(\eta^3$ -C₉H₇)PdCl]₂ (101) in acetone-d₆ consists of resonances at δ 7.08 (8 H), 6.99 (t, 2 H, J = 3 Hz, H-2), and 6.30 (d, 4 H, J = 3 Hz, H-1,3). The ¹³C NMR of 101 has resonances at δ 85.4 (C-1,3), 114.0 (C-2), 127.4 (C-4,7), 118.8 (C-5,6), and 136.9.^{99,100}

Recently Merola isolated and structurally characterized an η^3 -C₉H₇ complex, 102, formed by the reaction of $(\eta^5$ -C₉H₇)Ir(C₂H₄)₂ (103) and PMe₂Ph.¹⁰¹ Again the

 η^3 -C₉H₇ ligand is bent (28.5°). When **102** is treated with a large excess of PMe₃, the indenyl ligand is completely displaced from the metal to give $[Ir(PMe_3)_4]^+[C_9H_7]^-$ (**104**). Marder and Williams also observed displacement of the η^5 -indenyl ligand from $(\eta^5$ -C₉H₇)Rh(C₂H₄)₂ (**90**) to give $[Rh(dmpe)_2]^+[C_9H_7]^{-,102}$ which was structurally characterized. Unlike the formation of $[Re(PMe_3)_4^-$ (NO)(CH₃)]⁺[C₅H₅]⁻ (**75**), no η^1 intermediate was observed and the reaction does not appear to be reversible.

Ji, Rerek, and Basolo compared the kinetics of the phosphine substitution reactions of the indenyl complex $(\eta^5-C_9H_7)Mn(CO)_3$ (105) and the fluorenyl complex $(\eta^5-C_{13}H_9)Mn(CO)_3$ (106), both of which are first order in metal complex and in phosphine.¹⁰³ Phosphine substitution with $P(n-Bu)_3$ at 140 °C occurs 250 times faster with fluorenyl complex 106 than with indenyl complex 105 to produce the monophosphine products $(\eta^5 - \bar{C}_{13}H_9)Mn(\bar{CO})_2(P(n-Bu)_3)$ (107) and $(\eta^5 - C_9H_7)Mn (CO)_2(P(n-Bu)_3)$ (108). The related cyclopentadienyl complex $(\eta^5-C_5H_5)Mn(CO)_3$ is inert to thermal CO substitution. The rates of reaction of 105 and 106 with phosphines depend on both the size and basicity of the incoming ligand. These results support an associative mechanism in which ring slippage to form an $(\eta^3 - C_9 H_7)$ mono(phosphine) intermediate occurs in the rate-determining step.

With high concentrations of $P(n-Bu)_3$, the fluorenyl complex 106 is converted to the bis(phosphine) substitution product 110. The mono(phosphine) substi-

tution product 107, however, is not an intermediate in the formation of 110 from 106 under these conditions, since the conversion of mono(phosphine) complex 107

to bis(phosphine) complex 110 is 70 times slower than the direct formation of 110 from 106. To explain the rapid bis substitution of 106, the sequential formation of η^3 -C₁₃H₉ mono(phosphine), 111, η^1 -C₁₃H₉ bis(phosphine), 112, and η^3 -C₁₃H₉ bis(phosphine), 109, intermediates was proposed. At low phosphine concentration, η^3 -C₁₃H₉ mono(phosphine) intermediate 111 loses CO to form the relatively inert mono(phosphine) product 107; at high phosphine concentration, this intermediate adds a second phosphine to form the key intermediate η^1 -C₁₃H₉ bis(phosphine) complex, 112. A ¹³C¹H NMR of the reaction mixture at an intermediate time revealed 112 was the major component in solution as indicated by a resonance at δ 51.9 (C-9). There are to date no additional examples of η^5 - to η^1 -C₁₃H₉ isomerizations. The conversion of mono(phosphine) complex 107 to bis(phosphine) complex 110 was suggested to occur via slow addition of phosphine to form $(\eta^3$ - $C_{13}H_9$) bis(phosphine) intermediate 111.

Trogler, Basolo, Rheingold, and Kowaleski demonstrated that the odd-electron species $(\eta^5-C_9H_7)_2V$ reacts with CO to form $(\eta^5-C_9H_7)(\eta^3-C_9H_7)V(CO)_2$ (113).¹⁰⁴ Although the complex should be more crowded than the isostructural tungsten complex 100, the dihedral angle between the η^3 -carbons and the remaining carbon atoms of the η^3 -indenyl ligand is only 12.0°.

Unlike the η^3 complexes 9 and 100, the η^3 -fluorenyl ligand in $(\eta^3-C_{13}H_9)(\eta^5-C_{13}H_9)CrCl_2$ (114) is planar.¹⁰⁵

Casey and O'Connor reported much faster rates of bis(phosphine) η^1 complex formation for the reaction of PMe₃ with $(\eta^5-C_9H_7)$ Re(CO)₃ (115) than with $\eta^5-C_5H_5$)Re(CO)₃ (63).¹⁰⁶ The difference in ΔG^* of about

14 kcal mol⁻¹ between these two reactions is comparable to the >10⁸ rate enhancement ($\Delta\Delta G^* > 10.7$ kcal mol⁻¹) reported by Basolo and Rerek for the phosphine substitution reactions of (η^5 -C₅H₅)Rh(CO)₂ and (η^5 -C₉H₇)Rh(CO)₂.⁸⁷ Once again, the large rate differences are probably related to the generation of a fully aromatic benzene ring in the proposed η^3 -indenyl intermediates. Unlike η^5 -C₅H₅ complex 63, the η^5 -C₉H₇ complex 115 gives isolable η^1 -C₉H₇ complexes, 116, with both the bulky P(*n*-Bu)₃ ligand and the less nucleophilic 2,2'-bipyridyl ligand. These η^5 - to η^1 -C₉H₇ conversions represent the only examples of η^5 -C₉H₇ isomerizations to isolable η^1 -C₉H₇ complexes. In 1977 Green reported that (η^5 -C₉H₇)Rh(C₂H₄)₂ reacts with excess *t*-BuNC to form (σ -C₉H₇)Rh(*t*-BuNC)₄, which was characterized by its infrared spectrum.⁹²

Cyclopentadienyl and indenyl ligand isomerizations often play a significant role in the chemistry of their Ring Slippage of Transition-Metal Cp and Indenyl Complexes

transition-metal complexes. Although the factors that control these processes are not yet fully understood, it is clear that these ligands offer promise in the design of new stoichiometric and catalytic reactions for which accessible open coordination sites are of crucial importance.

References

- (1) Kealy, T. J.; Paulson, P. L. Nature (London) 1951, 168, 1039–1040.
- (2)Miller, S. A.; Tebboth, J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632-635
- (a) Fischer, E. O.; Pfab, W. Z. Naturforsch B: Anorg. Chem., Org. Chem. 1952, 7B, 377-379. (b) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125-2126.
- For an earlier review on C₆H₆ ring slippage, see: Slocum, D. W.; Duraj, S.; Bencini, J.; Webber, K.; Noble, R.; Kuchel, K.; Hodgman, M.; Owen, D. A.; Siegel, A.; Rathke, J. In Fundamental Research in Organometallic Chemistry, Tsutsui, M., Ishii, Y., Yaozeng, H., Eds.; Van Nostrand Reinhold: New York, 1982; p 901. Dahl, L. F.; Wei, C. H. *Inorg. Chem.* **1963**, 2, 713–721. Bennett, M. J.; Churchill, M. R.; Gerloch, M.; Mason, R.
- Nature (London) 1964, 201, 1318–1320.

- Nature (London) 1964, 201, 1318-1320.
 (7) Wheatley, P. J. Perspect. Struct. Chem. 1967, 1, 1-40.
 (8) Smith, A. E. Inorg. Chem. 1972, 11, 165-170.
 (9) Byers, L. R.; Dahl, L. F. Inorg. Chem. 1980, 19, 277-284.
 (10) For n⁵-cyclopentadienyl ring distortions in complexes of cylindrical symmetry, see: Fitzpatrick, P. J.; LePage, Y.; Sedman, J.; Butler, I. S. Inorg. Chem. 1981, 20, 2852-2861.
 (11) King, R. B. Inorg. Chem. 1968, 7, 90-94.
 (12) Schuster-Wolden H G: Baselo F. J. Am. Chem. Soc. 1966
- (12) Schuster-Woldan, H. G.; Basolo, F. J. Am. Chem. Soc. 1966,
- 88, 1657-1663. (13) Cotton, F. A.; Rusholme, G. A. J. Am. Chem. Soc. 1972, 94,
- 402 406.
- Calderon, J. L.; Cotton, F. A.; Legzdins, P. J. Am. Chem. Soc. (14)1969, 91, 2528-2535.
- Cotton, F. A. Discuss. Faraday Soc. 1969, 47, 79-83
- (16) King, R. B. Inorg. Nucl. Chem. Lett. 1969, 5, 901-903.
- (17) Cotton, F. A. In Dynamic Nuclear Magnetic Resonance Spectroscopy, Jackman, L. M., Cotton, F. A., Eds.; Academic: lew York, 1975.
- Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1974, 64, (18)393-402.
- (19) Bottomley, F.; Darkwa, J.; White, P. S. J. Chem. Soc., Chem. Commun. 1982, 1039–1040.
- (20) Huttner, G.; Brintzinger, H. H.; Bell, L. G.; Friedrich, P.; Bejenke, V.; Neugebauer, D. J. Organomet. Chem. 1978, 145, 329–333 and references therein.
- (21) For a structurally characterized main-group η^3 -C₅Me₅ complex see: Schonberg, P. R.; Paine, R. T.; Campana, C. F.; Duesler, E. N. Organometallics 1982, 1, 799-807.
 (22) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 2,
- 38 45
- (23)Wilkinson, G.; Cotton, F. A. Prog. Inorg. Chem. 1959, 1, 1 - 124
- See ref 13, 33, 40, and 66 for representative X-ray structures.
 Bennett, M. J.; Cotton, F. A.; Davison, A.; Faller, J. W.; Lippard, S. J.; Morehouse, S. M. J. Am. Chem. Soc. 1966, 88, (25)1-4376
- (26) Faller, J. W.; Murray, H. H.; Saunders, M. J. Am. Chem. Soc.
- 1980, 102, 2306-2309.
 (27) Ustynyuk, Y. A.; Voevodskaya, T. I.; Zharikova, N. A.; Ustynyuk, N. A. Dokl. Acad. Nauk SSSR 1968, 181, 640-643.
- (28) Tsutsui, M.; Hancock, M.; Ariyoshi, J.; Levy, M. N. J. Am. Chem. Soc. 1969, 91, 5233-5236.
 (28) Chem. Soc. 1969, 91, 5233-5236.
- (29)For an additional π to σ rearrangement, see: Tsutsui, M.;
- (30)(31)
- Hudman, C. E. Chem. Lett. 1972, 777-778.
 Cross, R. J.; Wardle, R. J. Chem. Soc. A 1971, 2000-2007.
 (a) Calderon, J. L.; Cotton, F. A.; Takats, J. J. Am. Chem. Soc. 1971, 93, 3587-3591.
 (b) Calderon, J. L.; Cotton, F. A.; DeBoer, B. G.; Takats, J. J. Am. Chem. Soc. 1971, 93, 970-970. 3592-3597
- (32) Khan, O.; Dormond, A.; Letourneux, J. P. J. Organomet. Chem. 1977, 132, 149–162.
 (33) Rogers, R. D.; Bynum, R. V.; Atwood, J. L. J. Am. Chem. Soc.
- 1978, 100, 5238 and references therein.
- (34) Kita, W. G.; Lloyd, M. K.; McCleverty, J. A. J. Chem. Soc., Chem. Commun. 1971, 420-421.
- (35) Hunt, M. M.; Kita, W. G.; Mann, B. E.; McCleverty, J. A. J. Chem. Soc., Dalton Trans. 1978, 467-474.
- Werner, H.; Kraus, H.-J. Angew. Chem., Int. Ed. Engl. 1979, (36)18.948-949
- (37) Hames, B. W.; Legzdins, P.; Martin, D. T. Inorg. Chem. 1978, 17, 3644-3647.

- (38) Werner, H.; Kühn, A. Angew. Chem. 1979, 91, 447-448 and references therein. (39)
- Casey, C. P.; Jones, W. D. J. Am. Chem. Soc. 1980, 102, 6154-6156.
- (40) Goel, A. B.; Goel, S.; VanDerVeer, D.; Clark, H. C. Inorg. Chim. Acta 1981, 53, L117-L118.
 (41) Crichton, O.; Rest, A. J.; Taylor, D. J. J. Chem. Soc., Dalton
- Trans. 1980, 167–173. (42) Fettes, D. J.; Narayanaswamy, R.; Rest, A. J. J. Chem. Soc.,
- Dalton Trans. 1981, 2311-2316. (43) Mahmoud, K. A.; Rest, A. J.; Alt, H. G. J. Chem. Soc., Dalton
- Frans. 1985, 1365–1374. (44) Blaha, J. P.; Wrighton, M. S. J. Am. Chem. Soc. 1985, 107,
- 2694-2702
- (45) Chetwynd-Talbot, J.; Grebenik, P.; Perutz, R. N.; Powell, M. H. A. Inorg. Chem. 1983, 22, 1675-1684.
 (46) Marks, T. J.; Kolb, J. R. J. Am. Chem. Soc. 1975, 97,
- 3397-3401.
- (47) Brintzinger, H. H.; Bercaw, J. E. J. Am. Chem. Soc. 1970, 92, 6182-618
- 6182-6185.
 (48) Slocum, D. W.; Beach, D. L.; Ernst, C. R.; Fellows, R.; Moronski, M.; Conway, B.; Bencini, J.; Siegel, A. J. Chem. Soc., Chem. Commun. 1980, 1043-1045.
 (49) Slocum, D. W.; Duraj, S.; Bencini, J.; Webber, K.; Noble, R.; Kuchel, K.; Hodgman, M.; Owen, D. A.; Siegel, A.; Rathke, J. In Fundamental Research in Organometallic Chemistry; Tsutsui, M., Ishii, Y., Yaozeng, H., Eds.; Van Nostrand Reinhold: New York, 1982; p 901.
 (50) Roman, E.; Astruc, D.; Des Abbayes, H. J. Organomet. Chem. 1981, 219, 211-220.
 (51) Slocum, D. W.; Engelmann, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y., Yaozeng, T. B.; Fellows, B. L.; Moronski, M.; Shi, Y.; M.; Kang, M.; Kang, M.; Kang, K.; Ka
- (51) Slocum, D. W.; Engelmann, T. R.; Fellows, R. L.; Moronski, M.; Duraj, S. J. Organomet. Chem. 1984, 260, C21-C25.
 (52) Slocum, D. W.; Moronski, M.; Gooding, R.; Duraj, S. J. Or-
- (52) Stocum, D. W.; Moronski, W.; Gooding, K.; Duraj, S. J. Organomet. Chem. 1984, 260, C26-C28.
 (53) Kalina, D. G.; Marks, T. J.; Wachter, W. A. J. Am. Chem. Soc. 1977, 99, 3877-3879.
 (54) Yang, G. K.; Bergman, R. G. Organometallics 1985, 4, 100 (200)
- 129 138
- (55) Green, M. L. H.; Berry, M.; Couldwell, C.; Prout, K. Nouv. (56) Groun, M. E. M., Denry, M., Coudwell, C., Prout, R. Poul., J. Chim. 1977, 1, 187–188.
 (56) Berry, M.; Elmitt, K.; Green, M. L. H. J. Chem. Soc., Dalton
- Trans. 1979, 1950-1958. (57) Ephritikhine, M.; Green, M. L. H. J. Chem. Soc., Chem.
- (57) Ephritiknine, M.; Green, M. L. H. J. Chem. Soc., Chem. Commun. 1976, 926-927.
 (58) Rest, A. J.; Whitwell, I.; Graham, W. A. G.; Hoyano, J. K.; McMaster, A. D. J. Chem. Soc., Chem. Commun. 1984, 624.
 (59) Rerek, M. E.; Basolo, F. Organometallics 1983, 2, 372-376.
 (50) Barek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984, 106.
- (60) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984, 106, 5908-5912
- Cramer, R.; Seiwell, L. P. J. Organomet. Chem. 1975, 92, (61) 245 - 252.
- (62) Nesmeyanov, A. N.; Ustynyuk, N. A.; Bogatyreva, L. V.; Makarova, L. G. Izv. Acad. Nauk SSSR, Ser. Khim. 1973, 55 - 60.
- (63) Bergman, R. G. Acc. Chem. Res. 1980, 13, 113-120.
 (64) Casey, C. P.; Jones, W. D.; Harsy, S. G. J. Organomet. Chem. 1981, 206, C38-C42.
- Casey, C. P.; Andrews, M. A.; McAlister, D. R.; Jones, W. D.; Harsy, S. G. J. Mol. Catal. 1981, 13, 43-59. (65)
- Casey, C. P.; O'Connor, J. M.; Jones, W. D.; Haller, K. J. Organometallics 1983, 2, 535-538. (66)
- (67) Landon, S. J.; Brill, T. B. J. Am. Chem. Soc. 1982, 104, 6571 - 6575
- Wegman, R. W.; Brown, T. L. Organometallics 1982, 1, (68) 47-52
- Wilkinson, G.; Cotton, F. A.; Birmingham, J. M. J. Inorg. Nucl. Chem. 1956, 2, 95-113. Vitz, E.; Brubaker, C. H., Jr. J. Organomet. Chem. 1974, 82, (69)
- (70)C16-C18
- (71) Peng, M. H.; Brubaker, C. H., Jr. J. Organomet. Chem. 1977, 135, 333-337.
- (72) Lee, J. G.-S.; Brubaker, C. H., Jr. Inorg. Chim. Acta 1977, 25, 181-184 and references therein.
- (73) Behrens, H.; Meyer, K. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1966, 21B, 489-490. (74) Booth, B. L.; Smith, K. G. J. Organomet. Chem. 1979, 178,
- 361 370(75) Fabian, B. D.; Labinger, J. A. Organometallics 1983, 2,
- (10) 1059-664.
 (76) Casey, C. P.; O'Connor, J. M.; Haller, K. J. J. Am. Chem. Soc. 1985, 107, 1241-1246.
 (77) Maitlis, P. M.; Efraty, A.; Games, M. L. J. Am. Chem. Soc. 1965, 87, 719-724.
 (70) D. J. J. C. L. C. D. A.L. O. L. J. Chem. Soc.
- (78) Rubezhov, A. Z.; Gubin, S. P. Adv. Organomet. Chem. 1972, 10. 347-417.
- Efraty, A. J. Organomet. Chem. 1973, 57, 1-28.
- (80) Bryndza, H. E.; Bergman, R. G. Inorg. Chem. 1981, 20, 2988-2991
- (81) Faller, J. W.; Crabtree, R. H.; Habib, A. Organometallics 1985, 4, 929-935 and references therein.

- (82) Atwood, J. L.; Hunter, W. E.; Hrncir, D. C.; Samuel, E.; Alt, H.; Rausch, M. D. Inorg. Chem. 1975, 14, 1757-1762.
- Mingos, D. M. P.; Forsyth, M. I.; Welch, A. J. J. Chem. Soc., (83)Dalton Trans. 1978, 1363-1374.
- (84) Köhler, F. H. Chem. Ber. 1974, 107, 570-574.
 (85) Marder, T. B.; Calabrese, J. C.; Roe, D. C.; Tulip, T. H., personal communication.
- (86) Mlekuz, M.; Bougeard, P.; Sayer, B. G.; McGlinchey, M. J.; Rodger, C. A.; Churchill, M. R.; Ziller, J. W.; Kang, S.-K.; Albright, T. A. Organometallics 1986, 5, 1656–1663.
 (87) Rerek, M. E.; Ji, L.-N.; Basolo, F. J. Chem. Soc., Chem.
- Commun. 1983, 1208-1209.
- (88) Hart-Davis, A. J.; Mawby, R. J. J. Chem. Soc. A 1969, 2403 - 2407.
- (89) Hart-Davis, A. J.; White, C.; Mawby, R. J. Inorg. Chim. Acta 1970, 4, 441-446.
 (90) White, C.; Mawby, R. J. Inorg. Chim. Acta 1970, 4, 261-266.
 (91) Jones, D. J.; Mawby, R. J. Inorg. Chim. Acta 1972, 6,
- (91)
- 157-160. (92)Caddy, P.; Green, M.; O'Brien, E.; Smart, L. E.; Woodward,
- P. Angew. Chem., Int. Ed. Engl. 1977, 16, 648-649. (93) Caddy, P.; Green, M.; O'Brien, E.; Smart, L. E.; Woodward,
- C. Chem. Soc., Dalton Trans. 1980, 962–972.
 Caddy, P.; Green, M.; Howard, J. A. K.; Squire, J. M.; White, (94)
- N. J. J. Chem. Soc., Dalton Trans. 1981, 400-406.

- (95) Eshtiagh-Hosseini, H.; Nixon, J. F. J. Less-Common Met. 1978, *61*, 107-121.
- Cramer, R. J. Am. Chem. Soc. 1964, 86, 217-222 (96)
- Cramer, R.; Kline, J. B.; Roberts, J. D. J. Am. Chem. Soc. (97) 1969, 91, 2519-2524.
- Nesmeyanov, A. N.; Ustynyuk, N. A.; Makarova, L. G.; An-(98)drianov, V. G.; Struchkov, Y. T.; Andrae, S.; Ustynyuk, Y. A.; Malyugina, S. G. J. Organomet. Chem. 1979, 159, 189–199. Nakasuji, K.; Yamaguchi, M.; Murata, I.; Tatsumi, K.; Na-kamura, A. Organometallics 1984, 3, 1257–1260. (99)
- (100) For a direct synthesis and NMR characterization of an η^3 -
- (100) 101 and 100 complex from indenylsodium and Cl₂CpTa(CHCMe₃), see: Gal, A. W.; Van der Heijden, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 978–980.
 (101) Merola, J. S.; Kacmarcik, R. T.; Van Engen, D. J. Am. Chem.
- Soc. 1986, 108, 329. (102) Marder, T. B.; Williams, I. D., personal communication. (103) Ji, L.-N.; Rerek, M. E.; Basolo, F. Organometallics 1984, 3,
- (103)740-745.
- (104) Kowaleski, R. M.; Rheingold, A. L.; Trogler, W. C.; Basolo,
- , Sect. B:
- (106) Casey, C. P.; O'Connor, J. M. Organometallics 1985, 4, 384 - 388.